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A CONTRACTING-INTERVAL PROGRAM FOR THE
DANILEWSKI METHOD™

By James D. Harris
Langley Research Center

SUMMARY

The concept of contracting-interval programs is applied to the Danilewski method
for finding the eigenvalues of a matrix. The development is a three-step process in
which (1) a contracting-interval program is developed for the reduction of a matrix to
Hessenberg form, (2) a contracting-interval program is developed for the reduction of a
Hessenberg matrix to colleague form, and (3) the characteristic polynomial with interval
coefficients is readily obtained from the interval of colleague matrices, and this interval

polynomial is then factored into quadratic factors so that the eigenvalues may be
obtained.

To develop a contracting-interval program for factoring this polynomial with inter-
val coefficients it is necessary to have an iteration method which converges even in the
presence of controlled rounding errors.

A theorem is stated giving sufficient conditions for the convergence of Newton's
method when both the function and its Jacobian cannot be evaluated exactly but when the
errors can be made proportional to the square of the norm of the difference between the
previous two iterates. This theorem is applied to prove the convergence of the gener-
alization of the Newton-Bairstow method that is used to obtain quadratic factors of the
characteristic polynomial.

*This research was originally presented to the Faculty of the School of Engi-
neering and Applied Science, University of Virginia, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy (Applied Mathematics).



SYMBOLS

Standard matrix notation is used throughout; that is, elements are designated by

lower case letters corresponding to the matrix symbol and with appropriate subscripts.

A real n by n matrix

A A after row and column interchanges

B matrix containing rounding errors made in reduction of H to F
E matrix containing rounding errors made in converting A to H
F colleague matrix in chapter IO

F defined as NM" - I in chapter II

f(x) vector whose components are functions of x

f g(x) approximation to f

H upper Hessenberg matrix

I identity matrix

Ijj' identity matrix with columns j and j' interchanged

J Jacobian of £

J & approximation to J

M inverse of N

N lower triangular matrix

n order of matrix A

P(x) polynomial of degree n

P;(x) polynomials satisfying recurrence relation
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Rn
u(s,),v(s,t)

A%

6J(x)

8P(x)

real numbers satisfying recurrence relation
large positive number
n-dimensional real-coordinate space
functions defined following algorithm H of chapter IV
upper triangular matrix
inverse of V
superdiagonal element of colleague matrix
diagonal element in colleague matrix
positive continuous function of x
positive continuous function of x
polynomial of degree n - 1 with positive coefficients

constant with same dimensions as 1/x

Notation used is as follows:

la]

1(S)

n
he A i tri . f ord All = Z .
where is a matrix [au] of order n, ||Al| lnéui?n<j=1 ia”l

if A and B are vectors or matrices, this means that each component
of A is less than or equal to corresponding component of B

{AYA - 5a =AY <A +06A) orinterval with midpoint A and half-
width 6A

asterisk following a symbol denotes approximation; for instance, u*(s,t)
is an approximation to u(s,t)

{f(X)|X ¢ S} where f isa functionand SC R"

vii



(P + 6P|

sup
x|l

{x19)
min{x|s}

greatest integer less than a

where P(x) = a,+a,_ 1P1 + .0+ aOPn and
oP = ba +ba, Py+...+02P . (62,20 foreach i), [Pz 5P
. ] ] 1]
denotes set of all polynomials P (x) = ag+...+aqP 4+ agP =~ such

that a; e [ai:t 5ai] (i=1,2,...n)
product symbol

supremum (least upper bound)

*1
. X9 ,
where, x isavector |, “{ [{x] = max {lx.'}
: 1=i=n 1
*n

set of all x such that statement s is true

least element of indicated set

viii



CHAPTER I
INTRODUCTION

This paper presents the results of an investigation of techniques for applying the
concept of contracting-interval programs (ref. 1) to the Danilewski method for finding the
eigenvalues of a matrix.

Justification

Most data used for input to a computer program are measured data or are the
result of truncating exact data. These inexact data are then processed by a computer
program which makes rounding errors. Thus, much analysis may be required to deter-
mine how closely the computer solution approximates the exact solution of the problem.

Contracting-interval programs present an alternative to this procedure. The user
of a contracting-interval program can supply an interval which is known to contain the
exact data. The contracting-interval program then gives him an interval, each element
of which is the exact answer corresponding to some element in the input interval. This
is as good a result as he could hope to obtain.

Notice that contracting-interval programs are not the same as expanding-interval
programs. An expanding-interval program computes an output interval which contains
all of the answers corresponding to elements of the input interval. However, there may
be elements in the output interval of an expanding-interval program which do not corre-
spond to any element in the input interval. For a further discussion of the differences
between contracting- and expanding-interval programs, see reference 1.

The Danilewski method is particularly appropriate for testing the concept of
contracting-interval programs, since it is a method which is very sensitive to rounding
errors. When executed by using a fixed-precision arithmetic, it frequently gives unreli-
able results because of the rounding errors, but a contracting-interval program based on
the Danilewski method yields exact results. Also, the Danilewski method is a fast
method for obtaining eigenvalues and, even with the increased precision that a
contracting-interval program requires, it may prove to be competitive in speed with
other more inherently stable methods (ref. 2).

The Danilewski method used in the present paper is not the classical Danilewski
method but is a three-step process whereby (1) a matrix is reduced to Hessenberg form
by a similarity transformation, (2) the resulting Hessenberg matrix is reduced to col-
league form (ref. 3) by a similarity transformation, and (3) the characteristic polynomial
is obtained from the colleague matrix and the roots of this polynomial are calculated.



As Wilkinson (ref. 4) has shown, it is in this second step that problems develop. The
resulting colleague matrix may be significantly more ill-conditioned than was the corre-
sponding Hessenberg matrix.

Previously, contracting-interval programs have been developed for solving linear
equations (ref. 1) and for finding real roots of a polynomial (ref. 5), but a contracting-
interval program has not been attempted for a problem so complex as the matrix-
eigenvalue problem.

Preview of Remaining Chapters

Any exact computation defines a mapping f from one vector space R™ to
another vector space R™. I S cCR", then £(S)= {f(X)|X e S}. If [A + 6A] C R,
then f[A + 6A] is not necessarily an interval. However, a contracting-interval pro-
gram computes an interval [B + 6B] such that [B + 6B] Cf[A = 6A].

A two-step process is used here to develop contracting-interval programs. The
first step obtains B such that B =f(A') where |A - A'| = %, and R is alarge
positive number. During this step the program must have the ability to control the
rounding errors made in each arithmetic operation. The second step finds 6B such

that [B + 6B} C f'EA' + Rl; 1 GAJ; that is, if B'e [B * 6B], then B' =f(A'") where

R-1
A' - A" = =—= BA.
jar - an| = B2
Contracting-interval programs have the property (ref. 1) that, given contracting-
interval programs for f and g, there is automatically obtained a contracting-interval

program for the composition of f and g.

In chapter II a contracting-interval program is developed for reducing an
interval JA + 6A] of real matrices to an interval [H + 6H|] of upper Hessenberg
matrices by a similarity transformation. Most of the material in chapter II is new,
although the algorithm for obtaining it is based on the one given in reference 4 on
page 357,

In chapter III a contracting-interval program for reducing an interval [H + 6H]
of upper Hessenberg matrices to an interval [F + 6F] of colleague matrices by a simi-
larity transformation is developed. The concept of a colleague matrix that is used here
is a generalization of the one given in reference 3. The form of the colleague matrix as
shown in chapter III was suggested by B. A. Chartres. Much of the work in chapter III
is based on work done in reference 6 although, in reference 6, Chartres was concerned
with obtaining a companion matrix F which was similar to some H'e [H + 6H].
From [F + 6F] a set of polynomials [P + 6P] is obtained, such that each element is
the characteristic polynomial of some A'e [A + 5A].



In chapter IV an algorithm is developed for obtaining an interval IZDI + 5b1] and
. . n .
the intervals [Si + ési] and [ti + 61'1] (1 = 1,2,...,[—2-]), where [%] is the greatest

integer in % and n is the degree of P such that, if s'e [Si + 6si], t' e I:ti * Gti],

and b'e [bl + 5b1], then

[

(20 + byPy) (Pa - siPy - ) ¢ [P « 6P]

1

(]
s

]
—

If n iseven, then by =0by =0. The method used is a generalization of the Newton-
Bairstow method. In appendix A, a proof is given that the algorithm developed in
chapter IV leads to convergence.

From chapter IV it may be seen that P, - s;P; - t. is a factor of the character-
istic polynomial of some matrix A' e [A + 3A] for s;e [Si + ési:l and te [ti * Gti]

(i = 1,2,...,[%]). Thus, the roots of this quadratic polynomial are eigenvalues of the

matrix A'. Intervals about the eigenvalues are not determined in this study.



CHAPTER II

REDUCTION OF AN INTERVAL OF REAL MATRICES TO AN INTERVAL
OF UPPER HESSENBERG MATRICES

In chapter II an algorithm for converting an interval of real matrices into an
interval of upper Hessenberg matrices by a similarity transformation is described.

Let A be a real matrix of interval midpoints, and let 6A be a matrix whose
elements are the interval half-widths. Let H denote an upper Hessenberg matrix;
that is, H has the form

hy;  hyg byg oo By
hgy  hgg  hyg han
hgy hgg ... hg
H=
hys Ngn
B hn,n—l hnn_ﬂ

Let N denote a matrix of the form

1
0o 1
0 ngg 1
N=10 n49 D3 1

0 Mha nh3 Nha

Let O6H be an upper Hessenberg matrix of all positive elements. The matrices H
and OH are determined such that if H'e [H + 6H], then H' is similar to some
A' ¢ [A + 8A]. To do this, an N of the form given above is found such that if

H' e [H + 6H], then H'=N"1A'N for some A'e [A 5A]; that is,

[H + 6H] € N"1[A + sA]N.



Since A is the midpoint of the original interval, it is desirable that the midpoint
of the interval of Hessenberg matrices satisfy H = N~ IAN for some N; that is,

NH = AN o

Such an H can be calculated by using exact arithmetic in the following algorithm as
long as no zero elements are generated along the subdiagonal of H (ref. 4, p. 358):

Algorithm A

For r=1,2,...,n

For i= 1,2,...,min{r+1,n}
n i-1
Dyp = + ik kr ~ Z DDy
k=r+1 k=2
For i=r+2,...,n
n r
yp t Z A1y z Dy r
Ny pq = k=r+1 . k=2
’ r+l,r

Now some provision must be made so that the algorithm applies in the case when

an h = 0 is calculated. This is done in the following manner:

r+l,r
Algorithm B
For r=12,..,r

For i=1,2,...,r

n i-1
hip =2y + 2 e z Diklyer
=T+l k=2




If r <n, then

For i=r+l,r+2,...,n

n r

O =3y + Z Aikkr ~ Z Dby
k=r+1 =2

Find j such that
ojl = max {lor+ll, lor+2l,..., lon}

Interchange (0 rel? Oj )
B Tryy 70, then

For i=r+1,r+2,...,n

Interchange (aji,a ril i)

Interchange (aij’ai r+1)

For i=1,2,...,r

1’

Interchange (nji,nr+1 i)
b

Dri1,r = Ors1

For i=r42,r+3,...,n
1. = Oi
i,r+1 hr+1,r
o =0, then

[ &

r+1 "~

For i=r+2,r+3,...,n

D pe1 =0

With algorithm B, an N and an H are obtained, but equation (1) is no longer

satisfied.



Effect of Interchanges

The effect of interchanges is shown in theorem 1 in which I.., denotes the iden-
tity matrix with columns j and j' interchanged. When I.., multiplies a matrix on
the left, the result is to interchange rows j and j' in that matrix. When Ijj' multi-
plies a matrix on the right, the result is to interchange columns j and j' in that
matrix.

Theorem 1 — Givenan nXn matrix AO, if N and H are calculated by algo-
rithm B, then NH = AN where

~

- O
A=L 1 (n-1)Tn-2,(m-2) - - - TeaA o - - - Iog (n-2)Tn-1,(n-1)"

and each i' corresponds to the j calculated by algorithm B when r =1 - 1.

Proof — See reference 7.

Bounds on Rounding Errors

If the interchanges which need to be made to A are known ahead of time, the
algorithm for finding N and H from A is the same as algorithm A.

Up to this point, rounding errors have been ignored. In reality, the computed H
and N satisfy

For r=12,....,n

For i= 1,2,...,min<r+1,n}

n i-1
hip =2y, + Z Birlkr ~ Z Dy + €4y
k=r+1 k=2

For i=r+2,r+3,...,n

n r

a5y + Z ANy z DoPiy + €4y
. - k=r+1 k=2
i,r+1 hr+1,r

where er is the rounding error made at a given step.

Let E = [eij]; then

NH - AN=E (2)



Now bounds on E which guarantee that H is very close to a solution of NH = AN
must be found. Also, OH must be found such that

[H+ 6H] € N"1[A = 6AIN

This can be done as follows: Let H'e [H + 6H] and A'= N'H'N'l, then NH' - A'N =0.
Subtracting this from equation (2) yields

NH-H)=(A-A)N+E

Therefore
A - & = [va - mn1] + en-l|
< Il - w2 + [l
Thus
|ar - &| = 6K
if
|~ o | 1 §&E:{—1 5& (3)
and
[EllnY = L o2 ()

where R 1is a large positive number.

If R is chosen to be very large then IE] must be very small, but 8H gets
larger as R gets larger. If |E| is very small then a large amount of precision must
be used in the computations. Since in the algorithms for computing ©&H, no attempt is
made to compute the largest possible 6H satisfying equation (3), there is very little to
be gained by choosing an extremely large value for R. Usually a satisfactory choice is
R =10. Then &H is taken to be as large as possible and still satisfy equation (3). The
algorithm used to determine 6H is described in the last section of this chapter.

Let G=[yij:, where yij>0 forall i and j. If

vl = % 54 (5)

then equation (4) can be satisfied by requiring that ,El = G.

I R L T - — TR WEN W TE WA T T 1T e

R o e 1y e e

i



Let M= N'l, where M has the same form as N. Therefore,

Y11 Y12

Yo1 Y22
G|M| =

"n1 n2

—_—

Y1n

Yon

Ynn

L L

1
2
|M52| |m1.13| 1

Since equation (5) must be satisfied, the following equations must be satisfied:

_%ay

Yil = TR

and

. i
ba.
) iy =

j=r+1

Yir *

Equation (6) is satisfied if

Gair

7ij|Myr| 2 R T D

Therefore, must satisfy

'}’ij

6air

= min

7 gzrsi \R@ - x + Dmy,|

(i=1,2,...,n)

mzr>1;nzi>1)

(6)

(j = r,r+1,...,n)

From this analysis it is apparent that if Yii is defined to be

6air

7’ij

daj1
Yi1 R

then, equation (5) is satisfied and |E||M]| = 6—Ré- for all E such that e, =

J
= min
2srsj\R(n - r + 1)|rnjr|

2 2)
(7)

the Yjj can serve as bounds on the rounding errors.



Effect of Interchanges on Rounding-Error Bounds

Now, the above assumes that the row and column interchanges that need to be made
are known beforehand, but these interchanges must be determined by the algorithm;
and Yij must be calculated before hij is calculated if i=j+ 1 and before ni,j +1
is calculated if i>j + 1.

The following notation is used: b =a @ e means that b is set equal to a value
which differs from a by no more than e, that is, |b -als e; b=a (@ e means
that O <b-a<e,and b=a (© e meansthat 0<a-b<e; b=a(1 ® e) is defined
to be equivalent to b =a @ (lale) with analogous meanings for b = a(l ® e)
and b=a(l O e)

Now, suppose the rounding-error bounds bij are determined as in algorithm C.

Note that it is important that the computed bij be no larger than the bij that would be
calculated if exact arithmetic were used. However, it is not necessary that the bij be

calculated extremely accurately since a small change in the rounding-error bound is not
likely to change significantly the amount of precision required in the corresponding

computation. Thus, for example, it is required that

by = 6;1(1 © 0.01)

0a
that is, by; is required to be less than the exact result of the computation Rll,

but the use of a large amount of precision is not required in the computation.
Algorithm C

For i=12,...,n

by = 5;11(1 © 0.01)

For r=12..n

For i=1,2,...,r

n i-1
ir = {%ir T Z Ak kr Z rlikhkr © Pjy
k=r+1 k=2

10



If r <n, then

If

For

1=r+l,re2,...,n
n r
9 = 24 + Z ik kr - Z PP
k=r+1 k=2
Find j such that
c.l = max/{|o l |0 l |0 |
J r+1) ["r+2)7°7 |'n

Interchange (0r+1’ Uj)

%r41 * 0, then

(o3

For

For

For

n

r+1 "~

For

i=r+l,r+2,...,n

Interchange ( A5i3rel, i)

Interchange (aij’ai, r+1)
Interchange (Gaij’ éai, r+ 1)
Interchange (5331’ 6ar+1, i)

Interchange (nji’nr+1,i)

i=r+2,r+3,...,n

. = 0. /O
B r+1 i/ r+1

=0
r+l,r r+1

0, then
i= r+2,r_+M
D py1 =0

11



For i=2,3,...,r
r
Mei1i = "\ Preeri ¥ Z Pre1,iMi
j=i+1
mr+1,I‘+1 =1
For i= ]_’2,,,.,1’1
5a..
-— i 1:]
| -~ oin ‘ 10 0.01
i,r+l 2sjsr+1) |R(n - j + 1),mr+1,j| ( )

Now it must be determined whether or not the bounds on the rounding errors as
computed in algorithm C are larger than those given by equation (7). Suppose that
during execution of algorithm C all calculations for r = r' have been completed. Any
remaining interchanges affect only rows r'+2,r'+3,...,n of N, A, and 0A, and
columns r'+2,r'+3,...,n of A and JA.

The only elements of M required for the calculation of b;,., (i=1,2,...,n) are
those in row r'. These elements are not affected by the remaining interchanges.
Therefore, row r' of M is a row of the inverse of the N obtained after the execu-

tion of algorithm C is finished.

isr' ., =0a, ,. refor r isr T VR
For isr'+1, b6a;. =0a;., The efore, fo '+ 1, B S Ve

Now, for i>r'+ 1, the element in position ni,r'+1 after all interchanges are
completed may be the element which was in position ni',r'+1 when r =r" during the
execution of the algorithm. Thus, bi',r' was used as a lzound for the rounding error
made in the computation of ni,r'+1’ This implies that Oair, is equal to the element
which was in position éai',r' when r =r'. Therefore, bi',r' computed during the
execution of algorithm C satisfies bi',r' = Yipt that is, the bound on the rounding

is no larger than the one given by

error which was made in the calculation of 0y e
s

equation (7).

Therefore, if algorithm C is used to compute N and H,
-1| < 6A
E||N ==
|| = 22 (8)

where E is the matrix containing the actual rounding errors.

12



An Upper Bound on |M|

By using variable-precision arithmetic such as SPAR (ref. 8) provides, the ele-
ments of M can be calculated exactly. However, the b;,. need not be extremely
accurate. It is required only that

b.. £ min N )
2sj=r \R(n - j + Dm, .

to guarantee that equation (8) is satisfied. Therefore, rather than compute M exactly,
it is more efficient to calculate an upper bound on IMI by using single-precision
arithmetic.

One way of finding an upper bound on ]M] is as follows: Let M* be that
approximation to M which is calculated by

i-1
* *
mip = -f1 n, + Z nijmjp (10)
j=p+1

where fI denotes that the operations are done in single-precision floating-point arith-

. _ _ *
metic. Let Sy =n;, and Sy = [Sk + ni,k+p(1 + pk)mk+p,p(1 + nk)](l + Qk)' Then,
m;‘p =-8;_, forsome py, m,and 6 (k= 1,2,...,i-p) satisfying |0y, |m]
|9k| < Bsp’ and Bsp is a bound on the rounding errors made in single-precision calcu-

lations (ref. 9, p. 7). Therefore,

i-p-1 i-1 i-p-1
Sl—p =8 (1 + 91) + z nllm;‘p(l + p] p)(l + 5 p) (1 + Qr)
i=1 j=p+1 r=j-p
and
mip = Sip
Therefore
i-p-1 i-1 i-p-1
*
0= mrp + 0y —IT (1 + 61) + Z n1](1 + p] p)mjp(l + nj_'p) (1 + er) (11)
i=1 j=p+1 r=j-p

13



Let F=NM*-1 where F=[fij]. I i<y, f;;=0. K i=j, fj;=1-1=0.

¥ i=j+1, fij = n]+1,J j+1,] = 0, since the operation mJ+1 i nj+1,j can be per-
formed exactly. ¥ i>p+ 1
i-1
f. =n._+ Z n..m).k + m* (12)
ip ~ "ip ij7jp © ip
j=p+1
Subtracting equation (11) from equation (12) yields
i-p-1
fp=mplt- || (1+6)
i=1
i-1 i-p-1
*
+.Z nijmjpl'(1+p] 1+77 _[T 1+6 (13)
j=p+1 1” i-p
The following lemma is proved on page 65 in reference 10:
Lemma — If leil <fB<1 and 0=r=k=n and ng' =exp(1nBB> - 1 then
r k
-1 ,
W(1+ei) —W (1+ei) -1} <kB
i=1 i=r+1
Applying this lemma to equation (13) yields
i-1
. , , * o
|ip| = [rip |- p - DF" + 6 ' Z ,nij”mjpi(l i+2)
j=p+1
where
ng
B' = !‘. exp —8p |\ _ 1
n 1 - Bsp
Let
i-1
e - 1B+ 8 Z m, |(i-3j+2) (14)
ip | ip| _ | i | Jpl ]
j=p+1

14



Then

I fip , = e;‘p
Now

F=NM"*-1I=NM*- M)
Therefore, for example,
*
f49 =myy - myy

Since [f45] < €39, |miy - myp| < €}y

Define ¢, = EZZ' In general, for pzq + 2,

f =n_0+n 0

pa = "pg p,q+l
p-1

i=q+2

Therefore

Therefore

* ]
Mpg - mpql “pq T "pil i
i=q+2

Define
p-1
‘pa=%pa* /, |"pila
_ i=gq+2

Thus, for p+1>q,

lmpql < lm;ql + g

(15)

15



Therefore, equation (8) is still satisfied if substitution is made for the part of algo-

i lculation of . and b, follows:
rithm C that governs the calculation mr+1,1 an i re1 as follows
For i=2,3,...,r

r

* = - *

mr+1,i— fi nr+1,i+ Z 1r1r+1,jmji
j=i+1
r

* . . * .

re1,i T B lnr+1,il(r i) + z Inr+1,jmjil(r i+ 1) (1 ® 0.01)
j=i+1
r

' _|.* .

6r+1,i - €r+1,i + z lnr+1,jleji (1 ® 0-01)
j=i+2
sk
mr+1,r+1 =1

' —
6r+1,r+1 =0
For i=1,2,...,n

oa;.
. ij
bjre1 =, Din —— (1 ® 0.01)
e+l 2<jsr+1 ||R(n - j + 1)<|.m;+1,ji + E;'+1,j)

*

[ . . . . .
r+1,j' + 6r+1,j requires 3(r - i) multiplications and

The calculation of lm
4(r - i) + 1 additions.

An upper bound on |M| can also be calculated by using expanding-interval arith-
metic. With this method an interval [mi"p + émiI;' is calculated by using the rules of

expanding-interval arithmetic as described on page 390 in reference 1 or under the

heading "Rounded Interval Arithmetic" on page 11 in reference 11 such that

To find an upper bound on m by using this method requires

*
mip € Enip * 6mip:)' r+l,j
4(r - i) multiplications and 4(r - i) + 1 additions. The émip
expanding-interval arithmetic satisfies the following inequality:

calculated by using

om, < eip[l + Bgpli- p - 1)]

where e is defined by equation (15).

p
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Storage of Arrays

Although in the above development N, H, and A are thought of as three sepa-
rate matrices, there is no need to store them in the computer as separate matrices.
Notice in algorithm C that after a;, is used in the calculation of h;, it is never used
again. Therefore, hj, canbe stored in the same location as a;,.. Also, after aj,
is used to calculate D pyys a;,. is not used again. Thus, N ril can be stored in the
same location as a;,.. If this scheme is used to store N, H, and A, only one set
of nXn locations is needed to store all three matrices.

Single-precision arithmetic can be used in the calculation of mi"p and EbQ' Since
N is calculated by using variable-precision arithmetic, each Dy must be rounded to

single precision before either m;‘p or qu can be calculated. Since the locations

above the diagonal in the matrix M™* = mikj] are not used, these locations can be used
to store the elements of N rounded to single precision.

* . . . .
Let my; = nij(l ® Bsp) for 1i>j. With these changes algorithm C becomes
Algorithm D
For i=12,...,n

by = 521(1 O 0.01)

For r=1,2,...,n

If r>1, then

For i=12,...,r

n i-1
By = |3 z k%, r-1 " Z 2 k-1%kr] @ P;
k=r+1 k=2

If n>r>1, then

For i=r+l,r+2,...,n

n r
Ar =34y + Z kK, r-1 ~ Z i, k-1%kr
k=r+1 k=2
If r<n, then
Find j such that |ajr| # max ﬂar+1,r" |ar+2,r""" ‘anr|}

17
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If yp # 0, then

For i= 1,2"'

!

Interchange (aji’ar+1,i)

Interchange (aij’ai r+l)
H
Interchange (‘5331’ 6a... 1 i)
b

Interchange (53 6a1 r+1)

Ai1,r = 2re1,r @ Pr

For i =r:2,r+3,..,n

a.
air=<a LS )@bl
r+1,r

For i-= r+2,r+3,...,n

m

:+1,i =2ar (1 ® BSP)

r+1 i~ fl<ml r+1 F Z m]’r+1 Jl
j=i+1

;,_'_1 i =B [(r - i) lml r+1!

r
+ Z
=i+

],r+1m]1|(r i+ lil (1 ® 0.01)

j=i+l
r
' ' * :
Crel,i T (fre1,i F Z Im]',“'l}eji (1@ o0y
j=i+2
* =1

Mryl,r+l =
] —_—
6r+1,r+l =0



For i=1,2,...,n

b; = min I %24 : )}(1 ® 0.01)

25jSr+l ]E(n -+ 1)([m;‘.+1,j] Ay

Determination of &6H

Now that an algorithm for determining N and H has been developed, the
interval half-width 6H must be determined so that equation (3) is satisfied. Let

Mg = lm;q] + &g

Let

M! - t

[™pa]

Then

M| < M’

The problem of finding O6H is solved in two steps. First, a 6Q is found such
that
-1 .~
s - 2
IN|6Q = 7 A (16)

Then ©&6H is found such that
O0H M' = 5Q (17)

Equations (16) and (17) imply that
IN| 6H |[M| = |N| 6H M' = |N| 6Q = R—F'{l 5A

Therefore, if equations (16) and (17) are satisfied, then equation (3) is satisfied.
Let 6Q= [6qij]. Because of the form of 6H M', qul =0 for iz 3. Equa-
tion (16) is satisfied if

R-1
R

89y = b33

R-1 .
6094 Dyo = i 62 (i=2,3,...,n)

19



and

i
R-1
) [Pk | %5 = TR 95

k=

This last equation is satisfied if

R - 1 %3j;
[nixe| 0%y = == 775

Therefore, if j>1 and k > 1, define

oa.; -
6qy; = =1 min 1]
R izk [y [GE - 1)
Define
-R-1
5qli "R bay;
and
ba;
6q; = 2oL min {711
217 R i3 | |nyg

With this definition of 6Q, equation (16) is satisfied.
da; -

1,5 >1)
(2=k=i
(18)
(i=1,2,...,n) (19)
(20)

Notice in equation (18) the quotients —=i can be calculated beforehand and

i-1

stored in the locations reserved for 6aij.

If 6H is to satisfy equation (17) then the following equations must be satisfied:

led

=2
Pt
—

|

= 0qyy
Ohy; = 69y

and

Z Ohyy my; = 0gy;
k=max{j,i- I}

20
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This last equation is satisfied if

oh, 1 (max{j,i - 1} sk s n)

Therefore, define

0q. .
8h,, = min 1 (k > 1) (21)
ik s - '
1<jsk (n - max{j,i - I+ l)mk].
and
ohy = 64, (i=1or2)

With this definition of 6H, equation (17) is satisfied.
6qij

n - max{j,i - 1} +1

location reserved for 6aij- Once éqij is determined, it can be stored in the same

The quotients can be calculated beforehand and stored in the

location as 6ai]- if the elements of 06Q are determined in the sequence shown in the
following algorithm:

For j=2,3,...,n

For k=2,3,...,n

oa..
R-1_. ij

004, =
% TR B \ngd- D

The ©0hj), can be stored in the same location as 69 if the elements of &H are
determined in the sequence shown in the following algorithm:

For k=n,n-1,...,2

For i=1,2,...,min{k+l,n)

oh,, = min %3
ik T 1<jsk | (n - max{j,i - & + l)ml'(j

In calculating 6H and 6Q, it is important that the calculated values be no larger
than the exact values. Putting the above ideas together gives the following algorithm for
obtaining 6H:

21



Algorithm E

., R-1
R ="%

For i=2,3,...,n
i'=i-1

For j=23,...,n

6ay; = (ia_ll>(1 © 0.001)

R' 6a1-
day; = ((_IT—_i:JT)“)(l © 0.001)

dayq = (R' da;q)(1 © 0.001)

éai 1

(1 ® 0.001)

da9, = |R' min
21 i22 | |09

For j=23,..n

For k=2,3,...,n

6a..
R' min{——lJ—
_ izk \"ikl)

Kn— max{j,k- 1} +1

For k=n,n-1,...,2

For i-= 1,;27,...,min{k+1,n}

da..
day =| min —%(1 © 0.001)
1<j=k |Mk;j

Gakj =

) (1 © 0.001)

After execution of algorithm E, 6hik is stored in the location initially reserved
for Obayy.

This completes the discussion of how to obtain H and J6H.
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CHAPTER 11

REDUCTION OF AN INTERVAL OF HESSENBERG MATRICES TO AN
INTERVAL OF COLLEAGUE MATRICES

Chapter III is devoted to the reduction of an interval of Hessenberg matrices to an
interval of colleague matrices by a similarity transformation. Where a colleague
matrix is a matrix of the form

Bi o -3y
1 By o a1
1 B3 “2n-2
F =
%-1" 22
1 Fn-2q

The interval of colleague matrices is of the form [F = 6F| where

0 ... 0 Oan

0 Ce 0 ba, 4
6F =

‘_0 s e . 0 631J

A Property of F
The matrix F has the property that

n-1

det(A\I -~ F) = Z a_; Py +P (V) (22)
i=0

23



where the P;() are defined by P;() = det(AI - Bi) and

B o ]
1 By o
1
Bi= .B3
@1
1 B;

The proof of this uses the following theorem:

Theorem 2 — The P;(A) satisfy the recurrence relationship

P10 = (A - Biyq) Pi®) - o Py 1) (23)

with PO=1 and P1=)\—B1.

Proof — P,(\) = det(\l - By)

= det -1 - B

24



= (x - By) det(\I - B,_4)

+ det

-1

= (A - By) det(AI- By_1) - a,_; det(\I- B, _,)

x - By -aq
-1 A - By ~ay
_1'

+ det

_
= (A - Br) P 1) -a._{ P o)

since the last term is zero.

Now it may be proved that equation (22) is valid.

n-1
Theorem 3 — det(I- F) = ) a,_; P;() + (%)
i=0

A-fp-3 -Qp_3

-1 A - Br-2

A-PBr-a Qpg

-1 A - Br-3

25




Proof —

A - By -y ap
-1 A - By -Gy an-1
-1 an-2
det(MI - F) = det
-1 A - Bn_l 32 - an_l
-1 A - Bn +aq
-1 -8By oy |
-1 A - B3 —a3
n+1
= (-1)7" "a, det )
“O0p-2
APy
-1 ]
[ - B - 7]
"1 A, - B3 —Ol3
-1 A - By
2
+ (- a,_q det .
~0n-2
A-Ppoa
B -1
—>\ - Bl —al
"1 A - Bz “az
SR G VI G A ag) det
-1 - Bn-9
L 0

+ (7\ - Bn + al) Pn_l()\)

26




Therefore

det(AI - F)

ap+a,_ 1Py +a,_9Po+...

+ (-0 g + )Py o+ (X - By +2a)P

n-1

an—ipi - Oy 1Pn—2 + (K _‘Bn)Pn-l
i=0
n-1

an—iPi + Pn
i=0

Because of the recurrence relation in equation (23), the polynomials P; can be
made to be the first n polynomials of any desired orthogonal set of polynomials by
properly selecting the o and the B;.

Algorithm for Reducing Hessenberg Matrix to Colleague
Form by Similarity Transformation

Now in returning to the problem of reducing the interval [H + 6H] to an interval
of colleague matrices, it is desirable to determine V and aq,ag,...,ay such that

VH = FV (24)

where V is of the form

Vll V12 . Vln-l
V22 V2n
V =
Vin
— -~

For j<n the ijth element of equation (24) is

j+1

iVij (25)
k=i

i+1,j

27



where

VOj = Vn+1,n =
and

V..=0

i (i>9)

For j =n, equation (24) gives

z Vikhkn Vicin *BiVin * 9 V1+1 n an—i+1Vnn
k=i
Define V1 nel = =2, i1V (i=12,...,n) and Vn+1,n+1

istic polynomial of F can then be written

n-1
det(\I - F) = P_(\) + Z a__i P,V
i=0
n
=1 :E:\[ P.(\)
Von . i+1,n+1 i

Il
o

1

Thus, the problem of finding aq,3g,.,a
for the matrix V.

Equation (25) yields

Vi it Blvl] + Vi o Z Vih Kj

V. . =
1
e P1,
Equation (26) yields
Vi,n+1 - V -1,n n*PiVin * a1V1+1 n’~ Z Vlk kj

It can be assumed that no h,
j+L,j

two smaller problems.

28

(26)

=V__. The character-

nn

(27)

is equivalent to finding an additional column

(28)

(29)

is zero since if it is the problem can be treated as



Equations (28) and (29) yield the following algorithm for the calculation of V:
Algorithm F

h 1

n+l,n "~
V=1

For j=2,3,...,n+1

For i=1,2,...,min{j,n}

i-1
- Z Vidy j-1* Vier -1 * BiVig-1 + 24Vieg 51
k=i
Vij = h. * P51

]’j_l

Vv v

n+1l,n+1 = ¥Ynn

The bij are the rounding errors incurred in the execution of the algorithm. Let

hoy T
K - h39
i hn+1,n
Then
VH = FV + BK (30)

Obtaining Midpoint of Interval of Colleague Matrices

Since H is the midpoint of the interval [H : 8H], it is desirable that F be the
midpoint of the interval of colleague matrices. How small BK must be and how
large 6F can be must be determined.

Let F' be a colleague matrix; then H' = V'lF'V is a Hessenberg matrix,
where V is the same as in equation (30). Subtracting this from equation (30) gives

V@ - H') = (F - F")V + BK

29



or
H-H =V 1F - v+ vIBK

It is required that IH n ] < 6H, which is true if IV BK] ‘R and
-1
v iF - myv|<B =

Define W= vl

Then it is necessary that ]WBK| < ===, which is true if
&hy, .
Kj
b. — min (31)
I 1]| R k=i | |G - k + 2)wyh j+1,]

The proof of this is on page 18 in reference 6.

A bound on |bi j-ll must be known before V.. can be calculated. Therefore,
b4

from equation (31) it can be seen that the ith column of W must be known before the
ith row of V can be calculated. There is no direct method of calculating W from V
so that the ith column of W is available for the calculation of Vj;

However, W can
be computed independently of V by the following method:

If VH=FV then HW = WF. This means that for j=n-1 and

izj+1
]
z Bic¥ig = Wi,5-1%-1 + ViiPy + Vi, 541
k=max{1,i—1}
where Wi]- =0 for i>j and Wig = 0. This equation can be solved for W 1
Thus, W can be determined by the following algorithm:
Wip=1

For j=2,3,...,n

For i=1,2,...,j

Wiy = Z Bik¥k,i-1 7 Vi,-2%-2 ~ W

i1Bisq
k=max{1,i-1} b

To use the W determined by this algorithm in equation (31) it is required that

IWI z lV'll but, since the computation of W is done independently of the computation

of V, this is not necessarily true. If interval arithmetic is used in the calculation of W

30



then it can be guaranteed that 'Wl exceeds |W‘| for any W' corresponding exactly
toany H'e [H + 6H]; that is, H'W' = W'F".

However, if V 1is calculated by using algorithm A and if the rounding errors are
required to satisfy equation (31) with the computed W how can it be guaranteed that
this V corresponds exactly to some H' e [H + 6H]?

The answer to this question is contained in the following theorem which is taken
from reference 6, page 23:

Theorem — If W is an upper triangular matrix such that |W| z IW'I for every W'
corresponding to an H' in the interval [H + 6H] and if equation (31) is observed in the
computation of V, that is, if |W||B||K]| < %i, then the H' which corresponds to the

computed V lies in [H + 6H].

Thus, V-1 corresponds exactly to H' e [H + 6H]. Therefore, IWI z IV'1|.

Now, since a bound on IV‘ll is known, a bound on |b can be calculated by using

ij
equation (31). Thus the following algorithm is obtained for the determination of V:

Algorithm G

Vll = 1
wig =1
hn+1,n =1

For j=2,3,...,n+1

For i= 1,2,...,min{j,n}
If_ j=n
j-1
k:max{l,i'l}
- [Wi,5-2 % 095 5 g) @2
- [Wi,j-l + 5Wi,j~1:|31"1
shy_ .
e |2 i K,j- 1 (1 ® 0.01)
Rksi (G- k+ 1)(|wy| + 5Wki)|hi,j-1|
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j-1

Vi j-1+ Viog,5-1 * PiVig-1+ 4Vierj-1

Vi = = h, @ ¢
]’]"1
Vn+1,n+1 = Vin

Interval arithmetic is used in the calculation of [Wij + Gwij:l'
Obtaining Interval Half-Width

In the problem of determining how large to make 0F, the constraint on 6F

is
that
v - myv] < Rf‘{ 1 sH
if |F- F'|<8F. This is true if
\w| |F - 7| |v] <B=Loen (32)
0 o 0 lan - a}li i
0 O 0 ,an 1- a;1_1|
|F - F| = - :
0 0 0 ,al ) a)
L _
Therefore
_0 0 0 ann| ‘an - a;ll ]
0 0 0 ann‘ Ian—l - ah_ll
F-F| V=] - : (33)
0 0 ... 0 |Vyy|lag-ai
L. -
Define V;,n+1 = a;1—i+1Vnn and 6Vi = IVi,n+1 h Vi,n+1"



Then
ann' |an—i+1 - a;1—1+1| = IVnnan—i+1 - Vnnal'l—i+1|
= |Vi,n+1 B Vi,n+1]
= 6V, (34)

Up to this point it has been assumed that an interval [F + §F] would be obtained,

i but the algorithm determines V; .4
m 2

bound on 8V; thanon |ap_j,;1 -2

instead of a; ;.4 and it is easier to obtain a

n-is1| Thus, a bound 6V, is found such that

if [6V1| = 6_\71 then equation (32) is satisfied. Therefore, n intervals

[Vi n+el _6_'\71:] (i=1,2,...,n) are found such that if Vi ntl € [Vi nel * 571] (i=1,2,...,n)
n
then the polynomial Vn+1,n+1 P, + Z Vi,n+1 Pi_l(x) is the characteristic poly-
i=1
nomial of some matrix H' e [H + 6H]. This is true because, since equations (32) and (31)
n

are satisfied, it is implied that Pn(>\) + z a;l_i Pi(x) is the characteristic polynomial
i=0
of some H' e [H z 8H], but

n-1

n
] _ T ]
Vn+1,n+1 Pn()‘) + z Vi,n+1 Pi—l(x) =Vin Pn(x) *+ /. qn-i Pi(x)
i=1 i=0

From equations (33) and (34) it can be seen that

0 ... 0 oVy

0 .. 0 6Vy
po vl - |

E; 0 5V,
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Therefore

W] [F - ¥ |v] =

0 |wnn| oV,

Thus, if equation (32) is to be satisfied, it must follow that

n

R
b ov < 25
i=j
This is true if
5h

1 jn
Oy [Wyi] = n-j+1
that is, if
<R-1 6hjn
VTR e
n-j+ |W]1|
Let
— oh.
oV = R-1,in n
R ysi - §+ Diwyy

Then 6V, =8V; (i=1,2,...,n)

Of course, if F and 6F are needed they can very easily be found from V.

and 5Vi (i=1,2,...,n).

34

(G =12,
(i=j,j+l,...,n; j= 1,2,...
(G =1,2,.

implies that equation (32) is satisfied.

..,n)

(35)

i,n+1



CHAPTER IV
FACTORING THE CHARACTERISTIC POLYNOMIAL

n+l,n+l and intervals Izvi,n+1 + 6Vi:l (i=1,2,...,n) were

obtained such that if V] e [Vi,n+1 N Wﬂ (i=12,..,n) then

In chapter Il V.

n
Vhel,nel Pn® + Z ViP; O
i=1

is the characteristic polynomial of some matrix H'e [H = 6H], where the P; satisfy
the recurrence relation in equation (23) of chapter III.

In chapter IV a method is developed for factoring an interval polynomial into a
product of interval quadratic polynomials. The notation may be simplified by assuming
that the interval polynomial to be factored is [P + §P] where

P(X) = anPO + an—lpl + ...+ alpn_l -+ aopn
and
6P(x) = da Pqg + 6a, Py + ...+ 02.P 4
Also, it is assumed that the a; are all equal and the By are all equal; that is,
o = a (i=1,2,...,n-1)
and

By=8 (i=1,2,...,n)

Given two intervals [C = 6C] and [D + 6D}, define the product
[C+ 6C][D + 6D] = {C'D'|C' ¢ [C + 6C] and D' e [D = 6DJ}.

In obtaining a quadratic factor of [P + 8P], first

Q=P2—SP1—tPO
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and
T = boPn_z + ...+ bn_2P0
are found such that

QT € [Pi%P:l

Then &Q and 6T are found such that

R-1
[Q+8Q[T + 6T] C EQT £ = GIEI
that is,
[Q+ Q[T + 6T] C [P = 6P]

The same method applied to [P + 6P| can then be applied to [T + 6T] to obtain
another quadratic factor.

Obtaining Interval Midpoints

Given estimates for s and t, P(x) can be factored in the following manner:
P(x) = (Py - sPy - tPo)(boPn_z #...4by aPy+by oP))
+b,_1(Py - sPg) + b, Py (36)

To develop a method for factoring P(x) as shown in equation (36) the following
lemmas are needed:

ILemmal — If iz2jz0 then

J
- j-k
PPy = Z " Py ok

iti
k=0

Proof — For j=0 and iz0, PyP; =P;. Thus the lemma is true for j=0. Now,

assume
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for izj if j=12,...,m-1. For izZm

P P, = Ex -BP_q- aPm_z:lPi

i m-1 m-2
_ m-1-k m-2-k
=@x-p) Z @ Piiok-ms1 = @ Z o Pj 4 2k-m4+2
k=0 k=0
m-1 m-1
f _ m-1-k m-1-k
: =(x-p) Z @ Piiok-ms1 = @ Z o Piok-m
i k=1 k=1
{ m-1
? +(x - Ba P.

‘ m-1

| _ m-1-k m-1

: - Z @ (x - AP ok -m+1 aPi+2k—n;| +(x - Bla P
‘ k=1

i-m+1
m-1
_ m-1-k m-1
B @ Piok-ms2 * x - Pa Py m+1
k=1
m
_ m-k m-1
- Z o Pi+2k-m ta (Pi—m+2 + aPi—m)
k=2
Therefore
m
_ m-k
PmPi - Z o Pi+2k—m
k=0
Lemma 2 — P(x) can be factored as shown in equation (36) by using algorithm H.

Proof — Equation (36) yields
- sbyP P o - sbyPyP  a-...- sb,_sP{Py - sb,_oPy - sb, 1P,

~thgPPp o - - .. - tb 4PoPy - th PP, - th P

270
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From lemma 1

_ 2
and
PP =Py v aPi
Therefore
P(x) = Pn(bo) + Pn_l(bl - sbo) + Pn_z(boa + by - sby - tb0>
+ Pn_3[a(b1 - sbg) + by - by - tb1]
2
+ Pn—4E°0-o‘ + a(bz - sbl‘) + Dby - sbg - tsz
2
+ Pn_5Eola + afbg - sby) + by - Sy - tb3]

2
R Pl[bn_5oz +afby_g - sby_g)+D g - s o - tbn_3]

2
+ Py(aPby_y - asby g+ by - sby 1 - tby o)

Since the polynomials P; are linearly independent, their coetficients can be

equated in the above equation. Thus
ag = b0
a; = b1 - st
a, =booz +bg - sb1 - tbo
ag = a(by - sby) + bg - sby - thy

and for n-1z2iz4

[§
1
R
o2
=
[1-N
+
2
o'
=
(W]
]
o'
e
[FM
S—
+
(o3
.
1
0
o
i
H
—
1
-+
o'
e
DN
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e maarars s

and

2
a,=a"b, 4-8Sab, a+b -sb 4-tb o

Thus the b; can be calculated by the following algorithm:

Algorithm H

bo =2y

by = ap + sbO

by =29 + sb1 + tbo - abo

bg = ag + shy + thy - a(bl - sbo)

For i=4,5

,5,...,n-1

2
by =a;+sby_y+th; o - @by g - by g)- a'b; 4

2
b, =a + Sbn—l +th, o+ asb, 4 - a"b, 4

This completes the proof of lemma 2.

Let u(s,t) =b,_ ; and v(s,t) =b,. I P, - sPy - tPy is to be a quadratic
factor of P(x) then it is necessary that wu(s,t) =0 and v(s,t) =0. The problem of
determining s and t such that this is true is complicated by the fact that it is not
practical to execute algorithm H exactly. Thus, actually, approximations u* and v*
to u and v are calculated as in the following algorithm:

Algorithm 1
*
bi‘:a1+sb6+ 2
* * *
by = ag + sby + thy - abg + Ve

* * * * *
b3 =ag + sb2 + tb1 - oz(b1 - sb0)+ z[/3
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For i=4,5,...,n-1

* * * * . * 2

b} =a; + sbyq + to) o - (b} sb¥ ) - o®b} ,+
* * * * 2, *

b, =a,+ Sbn-l + 1:bn_2 + ozsbn_3 -a bn—4 + I,Dn
* X

u*(s,t) =b_ 4

v¥(s,t) = b;
where the y,; are rounding errors. Let a; =a; + Y. Then
1 i _ % * *
aopn + alpn_l + P anPO - (Pz - SPl - tPO)(bOPn—Z + .. + bn_3P1 + bn_zpo)
* *
+ bn—l(Pl - sPO) + anO

This can be rewritten as

P'() = (Py - P - tPg) (bGP, g + - - - + Dj_gPy + b oPo)

where
' _ 1 . \ 1 _ * o * %
P(x) =agP +a;P 1 +...+2a, oPy+ P1<an_1 bn—l) + P0<an b + sbn_1>
Then
2 [P:l:<—5£]
R
if
2l oa|sl (i=1,2,...n-2)
‘ i 1|= R = Lydyeeey
da
1 I'l—l
Ian—l " Ppo1 - a‘n—lI = "R
and
ba
| * * n
|an - bn+ sbn_1 - anl = R
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These equations are satisfied if

Gal

|vi] =

Iwn-ll an- 1

ba.
|V = 5‘13?

da_ _
lb;—ll = gr;gl

and
day,

|b —sbrl 1| R

(i=1,2,...,n-2)

The above equations can be checked to determine if improved estimates s and t

are needed. New estimates sy and ty can be calculated by using Newton's method;

that is,
SN S As
= +
tN t At
where
du du
a_S —BT As u
v v -
— At t
s ot S,t
N du* ov* du
Approximations 3s and 35 to s

following algorithm:
Algorithm J

%
d_1 =0

* %
df:b’{+sd6k+n1

* * * * % %*
d2=b2+sd1+td0 - a(do -bo)+772

&g

, respectively, can be computed by the
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For i =3,4,...,n-2

* _p* * * X _ q* * O\ - a23*
df =bf¥ + sdf | +tdf 5 + oz(bi_2 ar g + sdi_3) ad¥ 4 +my

*  _pk * * * * 2 5%
di_;=bj q+8d) o+td) g+ aby g+ asd ,-a’d

n n-5
du* _
s = 9n-2
ov™ L
o5~ n-1
: _ : * _ su* _ au
The n; are rounding errors. I each n; = 0 and if bi =b; then 55 = s
and .av_* = EV_
s 9s
Algorithm K can be used to compute approximations to g—‘tl and —Z% as follows:
Algorithm K
%
C_2 = O
%
C_l =0
* *
CO = by
* * *
For i=2,3,...,n-3
x %k * * * * 2 ok
C; =b] +8C] ; +tC{_g - @(C{ g -8C{ g) - &“C{ 4+
* 1% * * * 2 %
Cn—z = bn—2 + an_3 + tCn_4 + aan_5 -a"'C g
%
du Nk
St - n-3
av* _ ¥
ot - Cn-2
* *
The Ci are the rounding errors and a—gt— and a—;’t— are approximations to gut— and %}.
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e ey, e

Then the As and At satisfy

au*  ou* *

9s at As - Py v

av* av* *

8s ot |t At - pgy vV Js,t
b

where p; and py take into account the rounding errors made in determining As
and At. Thus, the new estimates for s and t are sy=s+As and ty=t+At.

Successive estimates for s and t can be calculated in this manner, but the
process does not cause convergence unless the rounding errors are controlled. The
As the (i + 1)th

is being calculated, each of the rounding errors I:x,br (r =1,2,...,n),

following method is chosen for controlling rounding errors:
s-
estimate [t-1+1:|

i+l
1 (£ =1,2,..,n-1), €. (r=1,2,..,n-2), and pl,pz] is required to be in absolute
si - 1.1/ 2 1 S0
value less than 2 , where X =-—"—— and is the initial estimate.
ti - tic1] ty

.

Thus the algorithm for obtaining the interval midpoints is:

Algorithm L

A = 1 (1 © 0.01)
max {|sg|, |tof}
For j=0,1,...,large
s = Sj
t=t,
]
£= ‘E]
bg =ag,
= (al + sb @ £
*
2=(a2+sb + thy - ab)@g
= [33 + sbg + tb] - a(b* - stSJ ® ¢
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For i=4,5,...,n-1

* * * ' * 2. %
b = E“i + 8b}_y +tb] 5 - a(bi_z - sb)" 3) @ bi_4:| @ ¢

* * * * 2, *
b, = (an +sb, +th, 5+asb 5-0a bn-4) @ ¢

* _ * < n
P | 2R 3R’ Ib Sbn 1 2R’and
ba, oba ba ba ba
£ £ min —1 —-—2 .o n—2, n—l, B\ then
R’ R R 2R " 2R

convergence has been obtained. Proceéd to the”
determination of the interval half-widths.

*
d_1=0
* *
dg =Dy
* £ 3
1=("’1+Sd )@5

* _ * * * _ *
di—[b+sd11+tdi_2+oz(bi_2 d2+sd13 ozd4:|@g

x _ fi*x * * * * 2 %
X ;= (bn_1 +sd o +td* o+ ab” o+ asd 4 - @ dn_5) @ ¢
c*, =0

-2

*
c’, =0

-1

* _ *
Co =g




and

Let

Let

For i = 2,3,...,1’1—3

* * 2%
ct [b + sC 1t tC1 2 - (Ci—z B SCi-3> Bt

Crog =(Pjog + 5C) 5 + €]y + asC}

n—
<nlcn2 ann3>@£
nZan dn 10n3

<bdn2 “’n-lclnl >@£
3

'acnﬁ)@)g

n- Zdn 27 n 1Cn'

= A(min{]AS |, 1At I}) i

Sj+1 = Si +As

t]+1 = t] + At
X1 ]
X = =
X2 t
£, = A“X RS 1“
t u
fx) = fl ) { J
9 v
*(s,t)
t¥(x) =
*(s,t)
u 8
3s ot
Jd =
v ey
as ot

Jo:

45



and

au* u*
os ot
J* =
av* av*
os ot

Then, theorem 4 may be stated as follows:

Theorem 4 — The convergence criteria of algorithm L are satisfied in a finite number
of iterations if the following assumptions are satisfied:

(1) "J'l(xo)” <a

(2) “XI - x0” £b
31625 (x)

(3) kZI aleaxk =£2:-

for all x in “x - XO” <% where x!= S, x2 = t, f{=u,and f,=v

(40 h< —;— where h = abe

1

2-h
1 2
5 Aab =
() abK <5 gy
where
K= sup k(x)
[I%-%o)) 2P

and

1 2aF
k = = o o
x) T+ of(x) + T J(x)

where 0f and 6J are positive continuous functions of x with the property that

”J*(xi) - J(xi)” < £ 6J(x;)

46



and, for each i,

£ (=) - £xp)|| = € 6E()

(6) Aab? sup &J(X)| < 1
[|x-xof| S20 8

M &= 42

Proof — See appendix A.

Obtaining Interval Half-Widths

From now on the bs,bI,...,b:;_z calculated by algorithm L are denoted by

! bgsbys---sDy g
The interval midpoints s and t (Pg,by,...,b, o) satisfy

1 1 3 t
agP, + aan_l +.. .48, 9Py + Pl(an—l - bn—l) + PO(an -b + sbn_l)

= (P, - sP; - tpo)(bopn_2 +...+b  gP+b. 5Pg)

Let
ai' =a, Gi=1,2,...,n-2)
| .1 =21~ Pnoy
and
a =a -b +sb
Let
, n
P" =ayP, + Z a; P,
i=1
Then



Consider
P(x) = E)Z - (s + 8s)Py - (t+ Gtil [bn_z +8by o +(by g+ 80y 5Py

+. ..o+ (b + &b{)P, 5 + bOPn-ZJ

Now, if

1"

P(x) =ay+day + (ay_q + £5an_1)P1 +...+(a]+ 6a1)Pn_1 +agP

then expanding the first equation for P(x) and equating coefficients of the P;i(x) as
was done in lemma 2 yield

ag = b0
a'l' + 63.'1' =Dy + by - (s + 3s)by
ay + bay =bya + by + by - (s + 6s)(b1 + 6b1) - (t + 8t)by
aj + day = anl + 80y - (s + és)b(ﬂ +bg + Obg
- (s + Gs)(bz + 5b2) - (t+ z5t)(b1 + ﬁbl)
and for n-22iz4
a; +0aj' = az(bi_4 +0b;_4)+ a[bi_z +0b;_o - (s + (SS)(bi_3 + 6b1_3>]
+ (g + 0b;) - (s + Bs)(b;_ + Bb;_ ) -+ ot)(b;_g + 8b; o)
ay ;+06a) g =(b £+ 0b ) o+ ozl%n_:3 +0b, g - (s + 5s)(b,_4 + 5bn~4)]
- (s + 0s)(b,_o + 8b o) - (t + ot)(by,_3 + Ob_3)

ag +da; = az(bn_4 + 5bn_4) - ofs + 5s)<bn_3 + 6bn—3> - (t+ ét)(bn_z + ébn_z)

Using the fact that

Pr(x) = (pz - sPy - tPO)(bOPn_2 +...+b Py + bn_3Po)
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w yields

Tt T
bay = Oby - s 6by - 5s(b1 + Gbl) - 8t by .
| dag = a(ébl - &8s bo) + 8bg - 5 Ob, - 6s(b2 + 5b2)
b - t &by - 5t(b1 + 6b1) J
|
and for n-2z2i2z4

1] 2
6 = %o, _, + al:6b1_2 -5 0b; g - 08(b; 5+ 5bi_3)] + Bb; - 5 0b;

- és(bi_l + 6bi_1) -t ob, o - ét(bi_z + 6bi_2)

" _ 2
sal  =a’ b o+ aESbn_3 - s 8b,_, - 85(by_4 + b 4)]

- s 0b o - 85(b, o+ 8b; _g) - t 8by 5 - by o+ ob, _q)

w2
da; = a“ ob , - @ bs(b 5+ 06b _g) - sabb 4 -tOb o - ot(b, 5+ 08b o)

Now it is desirable to find bounds 6s on &s, 6t on &t, and El_oi on 0by
such that if |6s| = 8s, |6t|=5t, and |obj| < |€Ei| (i=1,2,...,n-2) then

P(x) € Ep” N —R% GP:|. This is true if

R-15,. (i=1,2,...,n) (38)

02| = =5 oay

For n-2=1i=4, where M > 1, equations (38) are satisfied if

2 M-1R-1
o2 ooy | = Mgt Bt ou,
M-1R-1
s ob;g] = 5 SR o

(ol + Itl)lébi_2| < M—51_\Tl’ Rﬁ L a,
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SM-lR—l
Y I et

ls 5bi_1|

M-1R-1
MR %

| Gbil <

| @] |os| Ibi-3 + 6bi_3| = :_3%\'/[' RI-{ 1 ba,

n-1’
shows that equations (38) are valid for |8b;| = 3b;, [6s]|=0s, and [6t|= 3t with

Treating the equations for &aj, bday, Oag, ba and 6a; ina similar manner

861""’%n-2’ g, and 6t defined in the following manner:

6bg =0 iz1)
ba; da. da. 5a.
- _M-1R-1_. i+l i+2 i+3 i+4
ob; = —/——— min<da; x . 39
U7 R Pl T+ lal Tsl ' a2 9
where Gaj =0 for j>n.

—_ da.

t= L B-1 pyp/ 1 (40)

SM. R nziz2) [oy_p|+ 009

— ba; ba;

0s = ﬁ RI-{ 1 mind min S S— , min LR (41)

oy :
nziz1 'bi—ll + b, 4 nziz3 ]a|(|b1_3l + 5bi—3>

Let

6Q1=a_spl+ﬁpo

Rl = bopn_z + blpn_3 + ...+ bn_zpo
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and
SRy =8by P 5+ 80y P\ ,+...+08b 5Py
Then
(@ = 0Q|[R; + 6Ry) < [P + 6]

The same methods can be applied to [Rl + GRl] to calculate [Qz * 6Q2]
and [Rz + 5R2:| such that

I:Q2 + 6Q2:| [Rz + 6R2:| - [Rl + 6R1:|

This process can be continued until

2 2 2 2

(@ + 6Qy)[Q = 5@y - - - FH . GQF]:I ‘iRH . aR[nﬂ c [P+ o7)

n

2
is even or odd.

where R[] is either a constant or a polynomial of degree one depending on whether n

The roots of any Qi € [Qi + GQi:l are eigenvalues of some matrix A'e [A + 5A:|.
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CHAPTER V
CONCLUDING REMARKS

In chapter II algorithms are given for reducing an interval [A x 5A] of real
matrices to an interval [H + 6H| of Hessenberg matrices such that each element
of [H + 6H] is similar to some matrix belonging to the interval [A = 5A]. The algo-
rithms of chapter II can be used in developing contracting-interval programs for other
processes which require reduction of a matrix to Hessenberg form.

In chapter III algorithms are given for reducing an interval of Hessenberg matrices
to an interval of colleague matrices by a similarity transformation. As is shown in
chapter III this interval of colleague matrices is equivalent to an interval of character-
istic polynomials [P + 6P], each element of which is the characteristic polynomial of
some H'e [H = 6H].

In chapter IV algorithms are given for obtaining interval quadratic poly-

nomials [Ql + 6Q1:], [Qz ) 6Q2], c e F[n] + 6Q[n]:J such that

2

2

(@ = 5Qy] [@  5Qg) - - - hg] " 6Q[Eﬂ [R[n] " 5anj c [P + 6P

2 2 2 12

n

where R[ is a constant if n is even or R is a polynomial of degree one if n is
]

odd.

Now if the Hessenberg matrix H that is obtained from chapter II has any zeros
along the subdiagonal then it is partitioned into Hessenberg matrices Hy, Ho, . . ., H,
l
with n = Z order (Hl) and such that no H; has a zero along the subdiagonal.
i=1
Each H; must be reduced to colleague form by the methods of chapter III, and then
the characteristic polynomial factored by the methods of chapter IV.

Combining the methods of chapters II to IV yields quadratic interval poly-

nomials [Qij + GQij:l (j = 1,2,...,[;-]; i= 1,2,...,1) and interval polynomials [Ri + 6Ri]

(i=1,2,...,1), where R; is a polynomial of degree one if order (Hl) is odd and R; is

a constant if order (H;) is even. Then if

Q€ [Qi]. + 5Qi].] <j = 12[%} i= 1,2,...,z)
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and
R; ¢ [Rl + 5Ri] G=1,2,...0)
then
i
l 2
1Tl Qj; (42)
i=1| j=1

is the characteristic polynomial of some matrix A'e [A + A].

Thus, any root of equation (42) is an eigenvalue of some matrix A'e [A + 5A].
Therefore, since the roots of any Qij are trivial to determine, a method is developed
for obtaining eigenvalues which are exact for a matrix differing by less than a specified
amount from the matrix A.

Appendix B contains an example of this method applied to a simple 3 X 3 matrix.

It is essential that variable-precision arithmetic be used when programing the
algorithms given in this report. It cannot be assured that the program is a contracting-
interval program unless the required amount of precision is used, and this required
amount of precision may be more than is obtained with either single- or double-precision
arithmetic.

Variable-precision arithmetic is presently not available at very many computing
installations since the hardware on most present-generation computers was not designed
in a way which would facilitate implementation of variable-precision arithmetic. How-
ever, software implementations of variable-precision arithmetic such as SPAR (ref. 8)
have been developed. As more efficient implementations of variable-precision arith-
metic are developed, the advantages of contracting-interval programs will be more dis-
cernible. Even with efficient implementations of variable-precision arithmetic it will
probably take more computer time to execute an algorithm by using variable-precision
arithmetic than by using single-precision arithmetic. However, this should not lead to
the dismissal of the concept of contracting-interval programs. The accuracy of computed
results must be determined by some means if these results are to be of any use, and it
may be more efficient to use a few more minutes of computer time to calculate results of
known accuracy than to estimate the accuracy by some other means. Conventional
methods of determining accuracy may require a comparison of the results of several
computer runs or a study of the problem by a numerical analyst.
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It has been the accepted pattern to have computers assume more and more duties
previously done by people, so the concept of computing numbers of known accuracy
should be the natural thing to do when the computers are designed with this in mind and
when the methods become available.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., July 29, 1971.
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APPENDIX A
PROOF OF THEOREM 4

The proof of theorem 4 makes use of a theorem which gives sufficient conditions
for the convergence of Newton's method in RP, where the function and its Jacobian are
known only approximately. This theorem is a modification of a theorem given on
page 115 in reference 12.

Suppose it is desired to find a root of f(x) = 0, where

- )
£ (x) x1
fo(x) %2
(%) = ) and X =
)| <

By using Newton's method successive approximations would be generated by
solving J(x;) (5,1 - ¥X;) = -{(x;) for x; ,, where J(x;) 1is the Jacobian evaluated
at x;. In most cases neither J nor f can be evaluated exactly at the point x;.
Let J gi(xi) and f ‘Ei(xi) be the approximations to J(x;) and f(x;) that are calculated.
Therefore, actually,
I (1) Fipn - %5) = ~fg,(x5)
is solved for x; +1 except that this system of equations cannot be solved exactly for

X. satisfies

il Therefore, X

i+l

T, (%5) Fie1 = %5 - P5) = -1, (%) (A1)

where p; is the error made in the calculation.
Now, if the approximations J Ei(xi) and f ’éi(xi) do not approach J(x;) and f(x;)

or if Py does not approach 0 as i approaches o then the sequence of iterates can-
not be expected to converge to a root of f(x) =0.
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APPENDIX A - Continued

However, suppose it can be guaranteed that

|'J51(xi) - I(x3) ”oo = £ 83(x) ‘ (A2)
2,6 - 50, = & o) (A3)
”Pi“w = g;1 (A4)

where 6J(x) and 6f(x) are positive continuous functions of x,

g =% - %) (i=12..)

£y isa prescribed value, and X is a constant having the same dimensions as 1/x.

procedure.

The theorem gives sufficient conditions for the convergence of the iterates deter-
mined by equation (A1) where equations (A2) to (A4) are satisfied at each step of the

Theorem 5 — Let successive approximations to a root of f(x) =0 be generated by
solving equation (A1) for x;,1 ateach step, where equations (A2} to (A4) are satisfied
and go = 4)\b2.

56

All norms used are «-norms. The following assumptions are made:

(1)
(2)

(3)

(4)

(5)

If x, is the initial iterate, then [17}(xg)[ =2

[|x1 - xo|| =P
Let the components of f(x) have continuous second derivatives which satisfy

n

)

k=1

821;(x)
k

=

% for all x in ”x - xoﬂ =2b

ij ox
Let h <% where h = abe

Let f g(x) be bounded for ”x - xO” =2 and £ = &, and let

]

F sup “ f g(x) "

[|x-xp)|=2b
=330
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APPENDIX A — Continued

Let

_1 9aF
k(x) = . of(x) + -5 6J(x)

and
K= sup k(x)
[[x-x|| =20

Then it is required that

1 %"h
AabK < =
2 5+ 8h

(6) Aab2 sup &J(x)| < 1
|[x-xg|[52b 8

If all these assumptions are satisfied then the iterates are uniquely defined and
|x - xg|f =2b for each v; and the iterates converge to some vector, say

for which

f(a) =0

and

I - @)= 55

Proof — See reference 7, page 11.

i-1

Lemma 3 — Let w; =y; + z aij(s,t) W
=1
i-1

Wi =Yg+ Z ai].(s,t) w]!

[

j=1

'

and Zy =Wy - Wy

and t. I Cj(s,t) is a positive continuous function of s and t for each i and

lim X, = Q,

V-0

(i=1,2,...,n) where each aij(s,t) is a continuous function of s

if Iyi - yil < £ Cy(s,t) (i=1,2,...,n) then |zi| < & By(s,t) for some positive continuous

function Bi(s,t) .
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APPENDIX A — Continued

Proof — For i=1 define B1 = C1 and the result is obvious.

Assume |z;| < £B; (i=2,3,...,k). Then

k

—_ — M = - !

|Zee1| = [Tkt = Tke1 * Z %1% = Picet = Vsl

=
K

k
* Zl Iak"'l,jl lzjl <8Ckyp + Z lak+1,j|£Bj
]:

k
Define By, ;(s,t) B C, ¢(s,t) + Z 'ak+1’j(s,t)lBj(s,t). Then lzk+1’ <EBy.q
=1

S
and Bk+1 is a continuous function of s and t. Let x = ,::I Then
t

u(s,t)
(%) =
v(s,t)
and
u*(s,t)
*(x) =
v¥(s,t)
Let
ou  ou
0s ot
J =
v v
s ot
and
ou* du*
I* = 8s ot
s ot

Theorem 6 — Let f*(x) be calculated by algorithm I where 'zpi] <t (i=12,..,n).
Then there exists a positive continuous function &f(x) such that ||f*(x) - £(x)] < £ 6f(x)
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APPENDIX A — Continued

for all x. Let J*(x) be calculated by algorithms J and K where lni' <
(i=12,..,n-1) and |zj|<¢ (i=1,2,..,n-2). Then there exists a positive continuous
function 6J(x) such that "J *(x) -J (x)” < £ 8J(x) forall x.

Proof — Since the multipliers of the b; and bi" in algorithms H and I are continuous
functions of s and t and, since

lemma 3 can be applied to obtain |bi - b;‘ l < ¢ Bj(s,t) for some positive continuous

|ai - (&g + zpi)| = |z,1/i| <k

function Bi(s,t) .

Now

Let d; be the result of algorithm J when each 7; =0.

Let 6f(x) = Bn-1(5,1)
By (s, )
[l ~ 160 =

(i=12,..,n

then of(x) is a continuous function of x and

u*(s,t) - u(s,t)

v*(s,t) - v(s,t)

b:;_ 1(Sit) - bn_ 1(S,t)

f
b(s,H) - b_(s,9 < £ ot

Ibi - (b;k + ni)l = ’bi - b;" + |ni| = g[Bi(s,t) + 1]

positive continuous functions Dj(s,t) such that

|a - af] < £ Dy(s,)

Therefore

and

du  du*

s os

ov ov *

o8 os

< £ Dn_Z(S;t)

< ED,_4(s,1)

Then by lemma 3 there exist
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APPENDIX A — Continued

Likewise, if c; is the result of algorithm K when each g = 0

lci - c;‘, < £ Ci(s,t) i=1,2,..,n-2)

for some positive continuous functions Cj(s,t) (i = 1,2,...,n-2). Therefore

. igt_* <£C,_4(s,H)
and

gt! - aaLt* < ECy ols,b)
Define

Dn_z(s,t) Cn_3(s,t)

&J(x) =
D, 1(s,t) Cn_z(s,t)

Then, 6J(x) is a positive continuous function of x and
|l - 3| < £ s3x)
Lemma 4 — In any bounded region ”x - Xg " <r,if §<§&, where £y 1is some positive

value, then there exists a constant F such that ”f*(x)” <F for each x in this region.

Proof — [|f*(®)] < [i(x)]| + £, 6f(x). The result follows from the fact that both f(x)

and &f(x) are continuous functions.

Theorem 7 — The convergence criteria of algorithm L are satisfied in a finite number of
iterations if the following assumptions are satisfied:

(1) ”J'l(xo)” Za

2 azfi(x)

&) E 5|53

1A

for all x in ”x - XO” <2 where x1= s, X2 = t, fy=vu,and f,=v

60



P

i e

A St -

APPENDIX A — Continued

(49 h <-21- where h =abc

1 _y
1 2
b =&
(5)  AabK <3 =
where
K= sup k(%)
”x—x0“§2b

and

2aF

k(x) = = + 5f(x) L 6J (%)

(6) Aab? sup &J (x)) <1
Jx-xos2o

(M) £y = 4xb?

Proof — In iteration k of algorithm L the rounding errors made in calculating the bi* s

C;, and d;‘ are all less than £;.. Thus, theorem 6 can be applied to get

£ ) - £60)]| < e St me)
and

137(a) - 3G || < & 3¢

The rounding errors made in calculating As and At are less than gk. Thus,
all the requirements of theorem 5 are met. Therefore, the successive iterates X; con-

verge to some « for which f(a) =0. Also, since Xj ~ @, g]. - 0.
dajp obag day_9 Obap_ 1 Oap .
Let x = mm{R =®”’' " "R’ 3R IR( There exists N; such

that j > N1 implies that g]. <X.
Now 0 =f(a)= f(lim Xj) = lim f(x].). Therefore, there exists N, such that
{00 j..oo

for j>Nj
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APPENDIX A — Concluded

4]
|[vispty)| < TFEn

and
. Jdap.1 da,
[u(s3ts)] < mm{ 2R ’ [s|4R

These two equations imply that for j> N,

ba,_1q
uepty)| <R
and

ba,

lv(s- t;) - s u(s; t-)| <5

] 1771

Therefore, for j > max{Nl,Nz} the convergence criteria of algorithm L are met.
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APPENDIX B

EXAMPLE

In appendix B, the algorithms of this report are applied to a 3 X 3 matrix. Itis
hoped that this will aid the reader in understanding which algorithms to use, the sequence
in which they are applied, and the result of each algorithm. Let

5 -6 -6 0.1 0.1 0.1
A=]-1 4 2 6A = (0.1 0.1 0.1
3 -6 -4 0.1 0.1 0.1

R=10 and each ;,B;=0. Use of algorithm D yields

5 -4.02 -6
A=10.3 -2.02 -6
0.33 0.01 2.02

and use of algorithm E yields

0.09 0.045 0.09
0A = [0.09 0.045 0.09
0.0225 0.045

where ngg =agy. Now let the upper Hessenberg portion of A be renamed

5 -4.02 -6
H=1|3 -2.02 -6
0.01 2.02
and let 6H = 6A. Then, algorithm G yields
1 -1.667 65.266
V= 0.3333  -99.3734
33.33
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APPENDIX B — Continued

The fourth column of V is

—

[_135.8393

268.0000
~166.7000
33.33

Equation (35) yields

FGV1 = 0.027
6Vy = 0.0054
V4 = 0.0015

Thus, the interval polynomial is
33.33%2 + [-166.7 @ 0.0015)X> + [268.0 @ 0.0054]X + [[135.8393 @ 0.027]

Now algorithm L is used to factor this polynomial. If sg =3, tg=-2, and g0 = 10'4,
then after the first iteration s; =3.0022, t; =-2.0341, and &, = 1079, After two
iterations sg9 = 3.00211, t9 =-2.03841, and &9 = 10-8. During the third iteration there

are computed

bg = 33.33
b = -66.63967370
10’2k = 0.00016389

bg‘ = 0.00016928

The convergence criteria are met.
Now, by using equations (39) to (41) and with M =3, 5_bl, 5t, and s are com-

puted as

3by = 0.00018

8t = 0.00004051
and
8s = 0.0000081
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Thus
(xz - [3.00211 @ 0.0000081]X - [-2.03841 @ 0.00004051]) (33.33x + [-66.6396737 @ 0.00018])
c 33.33X3 + [-166.7 @ 0.0015)x2 + [268.0 @ 0.0054]X + [-135.8393 @ 0.027]

Note that, since

5 -4.02 -6
H=|3 -2.02 -6
0.01 2.02

and
0.09 0.045 0.09
oH =|0.09 0.045 0.09
0.0225 0.045

if the 0.01 is replaced with 0 in H and the 0.0225 replaced with 0.0125 in &H,
since [0 @ 0.0125] c [0.01 @ 0.0225], then

5 -4.02 -6
H=|3 -2.02 -6
2.02

and

0.09 0.045 0.09
oH = |0.09 0.045 0.09
0.0125 0.045

Then H can be partitioned into submatrices which can be treated separately. Let

5 -4.02 0.09 0.045
Hl = 6H1 =
3 -2.02 0.09 0.045
Hg =2.02 and O0Hg =0.045. Thus, for X e [2.02 + 0.045], X is an eigenvalue of some
matrix in [A + 6A].

65



APPENDIX B — Concluded

Using algorithm G on Hy yields

1 1.66%7
0.3333

V =

The third column of V is

0.652
-0.9937
0.3333

5V = 0.02025

and

oVy = 0.0081

Therefore, the characteristic polynomial of [Hl + 6H1] is

0.3333%2 + [0.9937 + 0.0081]X + [0.652 + 0.02025]

Thus

(x - (.02 + 0.045))(0.3335%% + [0.9937 + 0.008] X + [0.652 + 0.02023])

is an interval polynomial, each element of which is the characteristic polynomial of
some A'e [A+ BA].
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